If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50z^2+5z-36=0
a = 50; b = 5; c = -36;
Δ = b2-4ac
Δ = 52-4·50·(-36)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-85}{2*50}=\frac{-90}{100} =-9/10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+85}{2*50}=\frac{80}{100} =4/5 $
| b/9=-11 | | Q=2/5w-4 | | -7n-3n=10 | | 5r^2=2+9r | | 1/x+9=3/x-2 | | -159=3(6n+4)-3 | | a^2+6a=4+2a | | 3x+9-8(x+1)=2x+4 | | 5/6m=5-11/12m | | z/5=5z-12 | | y/2+14=2 | | X-(-8)=x*3 | | 24x+32-2x=20.9x+30+x-2 | | (2x-5)+(2x-5)=90 | | 10x^2-58x+72=0 | | 5-2/3x=-4 | | F(x)=3x^2+2x+7 | | 12=-5(-6x-3) | | 3/5*n=7/10 | | 0=-16x^2-15x+28 | | p/9-4=-9 | | 2m6.2=7.4 | | (2,3)m=-4 | | (2x-5)+(2x-5)=180 | | 2x=22=4(x+3) | | x=3(180-x)+3 | | √(7x+84)=2x+17 | | -4.9t^2+18t-11=0 | | 30+10x=15x | | 10x+7=8(2x-4)-8 | | (2x-5)+(5x+45)=180 | | d/2+12=5 |